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Growth and Decrescence of Two-Dimensional 
Crystals: A Markov Rate Process 
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A Markov rate process whose transitions are captures and escapes of single 
atoms from the edge of a two-dimensional crystal is introduced. The stochastic 
equilibrium states of this process describe steady crystal growth, crystal-fluid 
equilibrium, and steady crystal decrescence. Exact and asymptotic growth rates 
are found. This extends recent results which dealt only with capture events. One 
application is to the growth of lamellar crystals from polymers. 
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1. I N T R O D U C T I O N  

Recently Gates and Westcot t  (3'4) (henceforth referred to as GWI ,  G W I I )  
showed how to analyze the steady growth of two-dimensional  crystals 
using a Markov  rate process whose states are representations of  an edge of  
a crystal. When  net growth occurs, the process is not  reversible and most  
such nonreversible processes have proved mathematical ly  intractable. In 
our  case, however, we found that  a proper ty  called dynamic  reversibi l i ty  

held, and this enabled equilibrium distributions to be found. Stat ionary 
states of  our  process can then describe steady, positive growth. (I shall refer 
to these s ta t ionary states as equilibrium states, the equilibrium referring to 
the shape of the edge, not  to an equilibrium between crystal and fluid 
phases.) The resulting growth  rates give an exact and more  detailed 
description of  crystal growth at the molecular  scale than was previously 
possible. 

These results were applied in G W I I  to the analysis of growth regimes 
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for lamellar crystals formed by polymers. Other possible applications are to 
growth of adsorbed layers on crystal surfaces, growth of edges on crystal 
surfaces due to dislocations, and growth of various cellular structures. 

A limitation of this analysis is that it did not admit events in which 
a t o m s  (or polymer chain segments or cells, etc.) escape from the crystal 
edge. Such events are more important when crystal growth is slow. They 
are essential for a description of the equilibrium between crystal and fluid 
phase. Here I show how to include such escape events in a Markov rate 
model. Given certain restrictions on the rates of capture and escape, one 
can give exact results for a continuum of steady states from rapid growth, 
through the two-phase equilibrium to rapid decrescence (which might 
occur by dissolving, melting, or vaporizing of the crystal edge). 

I give processes that are appropriate for both hexagonal and square 
crystal structures. One can therefore provide exact treatments of a range of 
growth regimes and growth habits for crystals in two dimensions. The 
results supplement the extensive physical and chemical literature on the 
subject (e.g., refs. 10 and 11, and references cited). In some cases our results 
differ (Section4 and GWI and GWII)  from those derived by more 
physically based arguments. 

This range of useful results in two dimensions seems not to extend 
easily to the process of three-dimensional crystal growth driven by 
nucleation (e.g., ref. 5). In three dimensions, one does not yet have even a 
probability distribution describing the surface of a growing crystal. (The 
well known distribution of Jackson, (8) the "SOS distribution," applies only 
to two-phase equilibrium, hence zero growth rate.) Three dimensional 
growth has been studied instead by computer simulation and by various 
ingenious approximations. (5'6) 

2. M I C R O S C O P I C  M O D E L  

Consider first the edge of a hexagonally structured crystal as 
illustrated in Fig. la, where a t o m s  are represented by disks. Figure lb 
illustrates events whereby a t o m s  join or leave the edge with rates c~,/3, 7 and 
e',/3', 7', respectively. 

Construct states in the manner of GW1 by connecting the centers of 
edge disks as illustrated in Fig. 2. Labeling the line segments between 
centers by + 1 for inclines, as one goes from left to right, and - 1  for 
decines, one can represent the edge by the vector ~ = (o-~ ..... a2M), where 
a i=  1, - 1. Impose periodic boundary conditions, a 2 M + i =  ai ,  and the 
initial condition 

2 M  

o,=0 (2.1) 
1 
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(a) 

(b) 
airy'  131 t13' ~3! T[3' vl To' 

Fig. 1. (a) Edge of a crystal with hexagonal structure. (b) Single-atom transitions into and 
out of the crystal edge. 

which gives the edge the same height at both ends. The events shown in 
Fig. 2b are all of the form 

( .... 1 , -1 , . . . ) - - . (  .... - 1 , 1 , . . )  

Or 

( . . . , -  1, 1,...)--, (..., 1 , -  1,...) 

so that (2.1) holds for all time. 
Suppose that the events shown in Fig. lb occur according to a con- 

tinuous-time Markov process with the transition probability rates ~, fl, 
and c(, fl', , /  between states ~ and ~' say, and denote these in general by 
q(~, ~'). This process is evidently irreducible and, since it has a finite state 
space, it is positive recurrent and must have a unique equilibrium 

(a) 

(b) 

a$ iv' f31 tl3' ~31 tf3' v$ To' 

Fig. 2. (a) Representation of the crystal edge of Fig. la. (b) Representations of the trans- 
itions in Fig. lb. 
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probabil i ty distribution p (a )  which is always at tained as time t ~ ~ in the 
process. 

In general we cannot  find p(a).  We can, however,  find it and the 
associated growth rate under  the condit ions 

c~ + 7 = 2/3 (2.2) 

and 

~'/~ = fi'//3 = 7'/7 (2.3) 

The first of these arose in GWI.  The new condit ions imply that  

~' + 7' = 2fl' (2.4) 

also. The three equality constraints leave three independent  parameters,  
which ! take as ~, v, and r/, where 

/ 3 = e + v ,  7 = c t + 2 v  
(2.5) 

~' = ~/~, /3' = q(~ + v), 7' -- r/(c~ + 2v) 

As described in OWl ,  e can be interpreted as a nucleation rate (in the 
general sense) and v as an extension rate which describes the horizontal  
rate of extension of an incomplete layer of disks. The new parameter  r/ 
relates the escape and capture rates in a curious way. 

When growth is rapid, r/ will be relatively small; q ,~ 1. When the 
crystal edge grows while remaining fairly flat (producing a crystal facet),  
will be small compared  to v. Thus, ~', for the event where an a tom escapes 
from a complete layer, will be nearly negligible. This latter event is 
sometimes given zero rate in growth studies (e.g., ref. 10). In our  case, 
however,  we cannot  depart  from (2.5) if we require exact solutions. 

When r /=  1, we shall find a condit ion of detailed balance (see 
Whittle (13) for a mathematical  formulat ion)  between escape and capture 
events and the process is reversible. It gives no net growth, but  describes 
the two-phase equilibrium between crystal and fluid. When r /> 1, we find a 
net decrescence or negative growth rate. 

If we reparametr ize (2.5) more  symmetrically, but  with a redundant  
parameter ,  

= 2c%, fl = 2(~o + Vo), 7 = 2(~o + 2Vo) 
(2.6) 

~' = 2'Cr fl = 2'(~o + Vo), 7' = 2'(C~o + 2Vo) 
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with ~. ~> 0 and 2' ~> 0, then 2' = 0 gives no escape events, and 2 = 0 gives no 
capture events, while 

)~'<2 

)~'=2 

) ( > 2  

gives net crystal growth 

gives two-phase equilibrium 

gives net crystal decrescence 

The special case 2 = 2' gives a reversible process, and in general we shall 
find that the process is dynamically reversible. These parameters are 
functions of temperature and concentration, but this is not discussed 
further here (see refs. 5, 6, 8, 10, and 11). 

3. T H E  S T E A D Y  S T A T E  

We need to find the equilibrium distribution of our process, describing 
states where steady growth or steady decrescence occurs. Let qO(~, ~,) 
denote the transition rate matrix when q = 0. This is written out explicitly 
in several ways in Sections 2 and 3 of GWI, but its physical interpretation 
and its mathematical form are fairly clear from Fig. 2b. I now claim that 
the new process, with rates given by (2.5), has transition matrix 

q(~, , , )  = qO(,, e,) + r/qO( _~ ,  _ , , )  (3.1) 

To see this, note that qO(a, ~,) has value c~ when the transition ~ ~ ~' has 
the form (recalling the periodic boundary conditions) 

( .... 1 , - 1 , 1 , - 1 , . . . ) ~ (  .... 1 , 1 , - 1 , - 1 , . . . )  (3.2a) 

where the cr~ not shown remain unchanged. Hence r /q~ - ~ ' )  has the 
value qe = c( when ~--. or' has the form 

( .... - 1 , 1 , - 1 ,  1,...) ~ ( .... - 1 , - 1 ,  1, 1,...) (3.2b) 

and this is the ~' transition shown in Fig. 2b. Since qO(~, ~ ' ) = 0  for the 
transition (3.2b), we see that (3.1) is correct for the c~ and ~' transitions. 
The transitions with rates/~' and ~/' may be checked against (3.1) in similar 
fashion, using the general property 

qO(~,~,)qO(_~,-~')=0 for all ~ ,~ '  (3.3) 

In GWI we showed that the process with transition matrix q0 is 
dynamically reversible. For present purposes one need note only that this 
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implies that the equilibrium probability distribution pO(~) satisfies the 
conditions (~2,~3) 

and 

furthermore, 

where 

pO(a) = pO( _ ~) (3.4) 

pO(a,)qO(~,, ~) = pO(a)qO(_a, _~ , )  (3.5) 

qO(,) = qO( _ g) (3.6) 

q0(~) = ~ qO(a, a') (3.7) 

these conditions holding for all g and a'. Equation (3.5) is a modified form 
of the condition of detailed balance satisfied by classical reversible 
processes. The method now hinges on the following simple result, which 
seems to be new. 

P r o p o s i t i o n  1. For any dynamically reversible process with 
transition matrix qO, the derived process with transition matrix of form 
(3.l) is dynamically reversible and has the same equilibrium distribution 
for all q/> 0. For ~/= 1 the derived process is also reversible. 

Proof. Replacing ~ and ~' by - ~  and - ~ '  in (3.5) and using (3.4) 
gives 

pO(g,)qO( _~, ,  _ ~ )  = pO(a)qO(a, ~,) 

Adding (3.5) to r/times (3.8) gives 

pO(~,)q(a,, ~) = pO(a) q (_~ ,  _~, )  

(3.8) 

(3.9) 

Now putting 

gives 

q(~) = ~ q(, ,  , ' )  

q(_  ~) = qO(_ ~) + qqO(~) 

= qO(~) + qqO( _ ~) 

= q ( ~ )  

[by (3.1)] 

[by (3.6)] 

(3.10) 

(3.11) 
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Equations (3.9) and (3.11) verify the conditions corresponding to (3.5) and 
(3.6) for dynamic reversibility of the derived process, and (3.9) identifies pO 
as its equilibrium distribution. Further, from (3.1) 

q ( - g ,  - g ' )  = q(g, ~') if t / = l  

so that (3.5) reduces to the standard condition of detailed balance, showing 
the process to be reversible (e.g., ref. 13). This proves the proposition. 
(Note that the proposition holds for o i taking any sets of values, and - 
representing any operation on ~, defining a set of conjugate states in the 
manner of Whittle. (12"~3~ 

Returning to the process of interest, we have from GWI 

where 

( N ) N 
p ~  lexp --JZ(TiGi+l and ~ or,=0 (3.12) 

i = 1  

J = �88 ~og(~/~) > 0 (3.13) 

and Z is a normalizing constant and, by Proposition 1, this is the 
equilibrium distribution of our general process for any ~/~>0 and rates 
satisfying (2.5). 

Define the growth rate as the rate of change of the expected number of 
atoms in the crystal per unit atomic distance along the edge. By the 
argument of GWI, the steady-state growth rate is 

G =  [<q0(~)>_t l<qO(_~)>] /M 

= (1 - t /)(q0(,) ) / M  

= (1-~/ )G ~ (3.14) 

by (3.6), where the expectation ( . )  is with respect to pO, and G o is the 
growth rate when r/--0. 

From the form of pO and qO it follows that, for fixed M, we can write 

G O = c~f(e/y) 

for some function f Putting, for 11 < 1, 

= ~ - ~' and 

(3.15) 

~7=7-7 '  (3.16) 

which represent, in a perverse sense, net rates for c~ and y events, we obtain 
from (3.14) 

G = g~f(~/~) (3.17) 
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which is just the growth rate for a process with capture events only, of rates 
~, y, and f i=  (:~ + y)/2. This process evidently has the same equilibrium 
distribution pO as well. 

In GWII we evaluated G o exactly and in various limiting regimes. For 
example, for fixed a and v, and M-~  oo we found 

G O ~ ( ( x ~ ) ) l / 2 / [  1 71- (0r 1 / 2 ]  (3.18) 

which, with (3.14), gives the limiting form of G in this long-edge limit. 

4. SQUARE CRYSTAL STRUCTURE 

Here the edge of a crystal is the upper profile of vertical stacks or 
columns of squares as illustrated in Fig. 3a. Figure 3b illustrates the capture 
and escape events with rates ~, fl, 7, and ~', fi', 7' again. 

States of the process are vectors h = ( h  1 ..... hM), where the hi are 
integers (positive or negative) representing the size of the up steps when 
moving from left to right along the crystal edge (h i=0  means no step, 
h, < 0 means a down step). Equal heights at the ends implies 

M 

~ h , = 0  (4.1) 
1 

~ rv' 
i 

(a) 

I i 

vl 
1 i 

(b) 
Fig. 3. (a) Edge of a crystal with square structure. (b) Single-atom transitions into and out 
of the crystal edge. The presence of further side neighbor atoms, indicated by dashed lines, 
does not influence these rates. Atoms can leave the top site or add to the top site of any 
column. 
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which is evidently preserved by the transitions. Again I assume a 
continuous-time Markov process with transition probability rates indicated 
in Fig. 3b and denoted in general by q(h, h'). Irreducibility of this process 
does not guarantee existence of an equilibrium probability p(h). The 
process may be null recurrent or transient. 

Again one can find p(h) only in the case where the rates satisfy (2.2) 
and (2.3), or equivalently (2.5). I claim that 

q(h, h') = q~ h') + r/q~ - h ,  - h ' )  (4.2) 

where qO corresponds to the process with q = 0. Checking this, note from 
Fig. 3b that q~ h') has value :~ when the transition h ---, h' has the form 
(taking hM+ 1 = hi) 

hj>~O--* h/+ 1 
(4.3) 

with the other h i unchanged. Thus, r / q ~  has the value qcr 
when h--* h' has the form 

hj <<. O-~ h j - 1  

hj+l~O-"~hj+l + l 
(4.4) 

This agrees with the c~' transition in Fig. 3b. Noting that 

q~ h ' ) q ~  - h ' )  = 0  (4.5) 

and checking other transitions in a similar way confirms (4.2). 
In GWI we showed this r/= 0 process to be dynamically reversible, 

giving equations like (3.4)-(3.7). Thus, by the arguments of Section 3, the 
process is dynamically reversible for all r//> 0. The equilibrium distribution 
is, for all t/~> 0 and v > 0, 

N 

p ~  lexp - 2 J  Ihi[, Y'hi=0 
1 

(4.6) 

with J as in (3.13) and Z a (new) normalizing constant. The results 
(3.14)-(3.17) are again applicable, and from GWII  

G~ --, (~7) 1/2 as M--,  oo (4.7) 

whence 

G~(c~7)I /z (1-q)=G~,  say, as M-- ,oo (4.8) 
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Sadler [ref. 10, Eq. (12)] reviews a more physically based argument, 
giving in the present notation, a growth rate 

Gp = (2e/3) 1/2 (1 -/3'//3) (4.9) 

He does not use conditions (2.2) and (2.3), but takes instead 

7 '=/3 '  and e' = 0 (4.10) 

To compare (4.8) with (4.9), choose ~, /3, 7, c(,/3', and 7' satisfying 
(2.2) and (2.3), giving 

Goo = [c~(2/3 - c~)] 1/2 (1 -/3'//3) (4.11) 

Now hold c~, fl, 7, and fl' fixed and reduce ~' and 7 '  so that (4.10) is 
satisfied. Reducing some escape rates, other rates remaining constant, 
increases the growth rate. So a Markov process would predict a growth 
rate greater than (4.11) under Sadler's conditions, a result not inconsistent 
with Gp. 

When ~ ~ v, whence ~ ~ 2/3, as is common for polymer crystallization, 
(4.9) and (4.11) are very close. This, however, is the case where (4.10) and 
(2.4) are most at odds. 

Most notably, Gp and Go definitely disagree when ~ =/3 = 7 r 0 and 
~' =/3' = 7 ' =  0, giving values 21/2c~ and c~, respectively. Sadler (m) already 
noted a dilemma created by this factor of 21/2 in Gp. 

Rates other than (2.5) with q = 1 can be chosen to give reversible 
processes with equilibrium distribution of the form (4.6) and describing the 
two-phase equilibrium (e.g., the two-dimensional version of the process of 
Jackson(8)). Such processes, however, when modified so as to give net 
crystal growth (e.g., Refs. 5 and 6), seem not to be amenable to exact 
analysis. 

In GWI (Section 12) we showed how the edge roughness of the crystal 
was quantified in a natural way by the diffusion coefficient 

2(a/7)'/2/[ 1 - (c~/?)l/23 

of a random walker whose steps are the hi. This result is independent of t/, 
a consequence of the fact that the equilibrium distribution (4.6) is indepen- 
dent of t/. Physically this means roughly that the 7' events, which tend to 
remove nucleations and produce a smoother edge, are balanced by the fl' 
transitions, which slow the extension of layers and so tend to produce a 
rougher edge. Similar considerations apply to the hexagonal crystal struc- 
ture (GWI, Section 12). 
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5. C O N T I N U U M  LIMIT 

In GWI we gave a rigorous argument concerning the convergence of 
the q = 0  Markov processes to a continuous state-space process studied 
most recently by Bennett et al/1) and Goldenfeld. (7) Rather than extending 
this lengthy argument to r/>/0, I give a more heuristic version. Fix r/ and 
take 

c~ = iL/M and v = gM/L (5.1) 

for fixed i > 0 ,  g > 0 ,  and L > 0 ,  with other rates given by (2.5). For  either 
the square or hexagonal model, take a complete layer of M atoms partly 
covered by a single incomplete layer (of M/2 atoms, say). By (5.1), c~ and ct' 
transitions are very rare as M--* oo. If there are none in (0, t), then there 
are no 7 or ~" transitions either (a.s. as M ~ oc). Thus, the process com- 
prises independent Poisson processes of rates/3 and/3'. If we shrink atoms 
to width L/M, so that the edge has fixed length L, then a step advances a 
distance 

X= (L/M)[N(t) - N'(t) ] 

in time t, where N(t) and N'(t) are the numbers of/3 and/3/ transi t ions in 
time t. Thus, X has mean 

( L / M ) ( / 3 - / 3 ' ) t ~ g ( 1 - q ) t  as M ~ o o  

by (5.1), and variance 

(L2/M2)(fl+/3')t-+O as M ~ o o  

Thus, a step moves deterministically with speed g ( 1 - r / )  in the limit. If 
r/< 1, layers become longer; if r/= 1, they remain static; and if r/< 1, they 
shrink to nothing. 

Isolated nucleations on a complete layer occur at rate iL/M per atomic 
distance, hence at rate i per unit length. In GWI the process of all c~ 
transitions is shown for t /= 0 to converge to a Poisson process of rate i 
uniform on the edge [0, L]  and on time intervals. For  t /> 0, there is no 
certainty that a nucleation (~ event) will survive, so that the analysis in 
GWI does not carry straight over. To continue the heuristic argument, 
suppose a single nucleation has occurred on a single-layer configuration of 
length M sites. Henceforth, the only events of significant probability for 
large M are y' transitions with probability 

~ ' / [~ '+2 /3+(M--3 )c~]~ / (1+~)  as M ~ o o  

822/52/1-2-17 
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/3 t ransi t ions with total  probabi l i ty  

2~/[~'+2~+(M-3)~]-~1/(1+7) as M - - * ~  

if the new layer has length 1, and  

2B/[2f l '+2~+(M-n-2)~]-~l / ( l+7)  as M - ~  

if the new layer has length n and 1 < n ~< M -  2, and fl' t ransi t ions with 
total  probabi l i ty  0 if n = 1, and probabi l i ty  

2~'/[2~'+2~+(M-n-2)~]-~7/( l+7) as M ~  

if 1 < n ~< M - 2 .  So, as M--* ~ ,  the probabi l i ty  of loss of the original 
nucleat ion is just  the probabi l i ty  of ruin of a gambler  with initial s take 1 
and probabi l i ty  p = 1/(1 + 7) of  winning and q = 7/(1 + 7) of losing at each 
play (against  an infinite bank) .  A classical result [ref. 2, p. 347, Eq. (2.8)] is 
that  the gambler ' s  ul t imate ruin has probabi l i ty  

1 if q > p ,  i.e., 7 > 1 

q/P=7 if q < p , i . e . ,  7 < 1 

Thus,  the nucleat ion survives with probabi l i ty  1 - 7 if ~/< 1, and so its rate 
tends as M--* ~ to an effective nucleat ion rate ( 1 - 7 ) ~ .  If  7 >  1, it does 
not  survive. To  be observed at all in the con t inuum limit it must  extend to 
length at least )~M for some 2 > 0, which it does with probabi l i ty  1/2M if 
7 >  1 [ref. 2, p. 345, Eq. (2.5)]. Thus,  there are no nucleat ions in the 
con t inuum limit if ~/> 1. (Note  the distinction between these ruin or 
r a n d o m  walk p rob lems  and those ment ioned  at the end of Section 4.) 

Then the result of Bennett  eta/. (1) gives, for this con t inuum model,  the 
growth  rate 

Gcont ~ -  [2i(1 -- 7) g(1 - 7)]  ~/2 i~(u)/io(u ) 

for 7 < 1, where 

So we can write 

u = L[2i (1  - 7)/g(1 - q)]  ~/2 

=,L(2i/g) 1/2 

Gcont = (1 o 
- 7) Gcont 

O where Gcont is the result for 7 = 0. This lat ter  result follows also f rom (3.14) 
and the direct p roof  that  G O 0 --~ Gcont given in G W I I .  
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Final ly ,  note  tha t  for t / =  1, the reversible  case, the c o n t i n u u m  limit  
process  is ent i rely static:  There  is no nuc lea t ion  or  extension.  F o r  q > 1, the 
l imit  process  is a reversed vers ion of the Bennet t  et  al. model ,  where  gaps  
are  spon taneous ly  c rea ted  in layers,  and  these gaps grow determinis t ical ly .  

6. F I N A L  C O M M E N T  

F o r  v ~< 0 one has well-defined processes p rov ided  c~ + 2v >~ 0. F o r  the 
square  case, Z = oo in (4.6), so there is no equi l ib r ium d i s t r ibu t ion  (ref. 9, 
p. 3) and  the process  is no t  pos i t ive-recurrent .  If e + 2v = 0, whence 7 = 0, 
the process  is evident ly  t ransient .  This shows tha t  there  is a fundamen ta l  
phys ica l  difference in g rowth  behav io r  be tween the cases e </~ < 7 and  
c~ >/~ > 7. Since c~,/~, and  7 vary  with t empera tu re  and  concen t ra t ion  in the 
fluid, this difference might  be observab le  as a physical  d iscont inui ty .  
The  la t te r  case m a y  be re levant  to the dendr i t ic  g rowth  hab i t  somet imes  
observed.  
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