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Growth and Decrescence of Two-Dimensional
Crystals: A Markov Rate Process
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A Markov rate process whose transitions are captures and escapes of single
atoms from the edge of a two-dimensional crystal is introduced. The stochastic
equilibrium states of this process describe steady crystal growth, crystal-fluid
equilibrium, and steady crystal decrescence. Exact and asymptotic growth rates
are found. This extends recent results which dealt only with capture events. One
application is to the growth of lamellar crystals from polymers.
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1. INTRODUCTION

Recently Gates and Westcott®* (henceforth referred to as GWI, GWII)
showed how to analyze the steady growth of two-dimensional crystals
using a Markov rate process whose states are representations of an edge of
a crystal. When net growth occurs, the process is not reversible and most
such nonreversible processes have proved mathematically intractable. In
our case, however, we found that a property called dynamic reversibility
held, and this enabled equilibrium distributions to be found. Stationary
states of our process can then describe steady, positive growth. (I shall refer
to these stationary states as equilibrium states, the equilibrium referring to
the shape of the edge, not to an equilibrium between crystal and fluid
phases.) The resulting growth rates give an exact and more detailed
description of crystal growth at the molecular scale than was previously
possible.

These results were applied in GWII to the analysis of growth regimes
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for lamellar crystals formed by polymers. Other possible applications are to
growth of adsorbed layers on crystal surfaces, growth of edges on crystal
surfaces due to dislocations, and growth of various cellular structures.

A limitation of this analysis is that it did not admit events in which
atoms (or polymer chain segments or cells, etc.) escape from the crystal
edge. Such events are more important when crystal growth is slow. They
are essential for a description of the equilibrium between crystal and fluid
phase. Here I show how to include such escape events in a Markov rate
model. Given certain restrictions on the rates of capture and escape, one
can give exact results for a continuum of steady states from rapid growth,
through the two-phase equilibrium to rapid decrescence (which might
occur by dissolving, melting, or vaporizing of the crystal edge).

I give processes that are appropriate for both hexagonal and square
crystal structures. One can therefore provide exact treatments of a range of
growth regimes and growth habits for crystals in two dimensions. The
results supplement the extensive physical and chemical literature on the
subject (e.g., refs. 10 and 11, and references cited). In some cases our results
differ (Section4 and GWI and GWII) from those derived by more
physically based arguments.

This range of useful results in two dimensions seems not to extend
easily to the process of three-dimensional crystal growth driven by
nucleation (e.g., ref. 5). In three dimensions, one does not yet have even a
probability distribution describing the surface of a growing crystal. (The
well known distribution of Jackson,® the “SOS distribution,” applies only
to two-phase equilibrium, hence zero growth rate.) Three dimensional
growth has been studied instead by computer simulation and by various
ingenious approximations.®

2. MICROSCOPIC MODEL

Consider first the edge of a hexagonally structured crystal as
illustrated in Fig. la, where atoms are represented by disks. Figure 1b
illustrates events whereby aroms join or leave the edge with rates «, f§, y and
o', B, v, respectively.

Construct states in the manner of GWI by connecting the centers of
edge disks as illustrated in Fig. 2. Labeling the line segments between
centers by +1 for inclines, as one goes from left to right, and —1 for
decines, one can represent the edge by the vector 6= (o,,..., 0,,), Where
o,=1, —1. Impose periodic boundary conditions, ¢,,,,,=0;, and the
initial condition ot

Y 6,=0 (2.1)
1
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Fig. 1.(a) Edge of a crystal with hexagonal structure. (b) Single-atom transitions into and
out of the crystal edge.

which gives the edge the same height at both ends. The events shown in
Fig. 2b are all of the form

(o I, =1,) = (0, =1L, 1)
or

(o =L, 1L)= (1, —1,.)

so that (2.1) holds for all time.

Suppose that the events shown in Fig. 1b occur according to a con-
tinuous-time Markov process with the transition probability rates o, f, y
and o', fi, ¥’ between states ¢ and ¢’ say, and denote these in general by
q(s, 6'). This process is evidently irreducible and, since it has a finite state
space, it is positive recurrent and must have a unique equilibrium

al Iy BIIB BIIB vila

(b) /\/\ \/\

Fig. 2. (a) Representation of the crystal edge of Fig. la. (b) Representations of the trans-
itions in Fig. Ib.
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probability distribution p(¢) which is always attained as time ¢ — oo in the
process.

In general we cannot find p(¢). We can, however, find it and the
associated growth rate under the conditions

a+y=28 (2.2)
and
dfa=p/B=yfy (2.3)
The first of these arose in GWI. The new conditions imply that
o 4y =2p (24)

also. The three equality constraints leave three independent parameters,
which I take as o, v, and #, where

f=a+v, y=o+2v
(2.5)
o' =na,  Pr=nla+v),  y=nlat+2v)

As described in GWI, o can be interpreted as a nucleation rate (in the
general sense) and v as an extension rate which describes the horizontal
rate of extension of an incomplete layer of disks. The new parameter #
relates the escape and capture rates in a curious way.

When growth is rapid, # will be relatively small; n < 1. When the
crystal edge grows while remaining fairly flat (producing a crystal facet),
will be small compared to v. Thus, o', for the event where an atom escapes
from a complete layer, will be nearly negligible. This latter event is
sometimes given zero rate in growth studies (e.g., ref 10). In our case,
however, we cannot depart from (2.5) if we require exact solutions.

When =1, we shall find a condition of detailed balance (see
Whittle!®) for a mathematical formulation) between escape and capture
events and the process is reversible. It gives no net growth, but describes
the two-phase equilibrium between crystal and fluid. When # > 1, we find a
net decrescence or negative growth rate.

If we reparametrize (2.5) more symmetrically, but with a redundant
parameter,

Ca=2ag,  f=Aag+vo), 7= Aatg + 2vo) 26)
o =2y, B=A(ag+ve), ¥ =4+ 2v) '
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with A0 and 1’ =0, then 2’ =0 gives no escape events, and A =0 gives no
capture events, while

i<l gives net crystal growth
A=A gives two-phase equilibrium
A >4 gives net crystal decrescence

The special case A= 1’ gives a reversible process, and in general we shall
find that the process is dynamically reversible. These parameters are
functions of temperature and concentration, but this is not discussed
further here (see refs. 5, 6, 8, 10, and 11).

3. THE STEADY STATE

We need to find the equilibrium distribution of our process, describing
states where steady growth or steady decrescence occurs. Let q°(o, ¢')
denote the transition rate matrix when n=0. This is written out explicitly
in several ways in Sections 2 and 3 of GWI, but its physical interpretation
and its mathematical form are fairly clear from Fig. 2b. I now claim that
the new process, with rates given by (2.5), has transition matrix

q(e, 6’y =40, 6') + 1g°(— 0, —0") (3.1)

To see this, note that ¢°(s, 6’) has value « when the transition ¢ — ¢’ has
the form (recalling the periodic boundary conditions)

(.,1,—-1,1,—-1.)>(.,1,1, -1, —1,..) (3.2a)
where the ¢, not shown remain unchanged. Hence ng°(—o, —¢’) has the
value nox =o' when ¢ — ¢’ has the form

(, =1, 1, =1, 1 )—> (.., =1, =1, 1, 1,..) (3.2b)

and this is the o transition shown in Fig. 2b. Since ¢°(s, 6')=0 for the
transition (3.2b), we see that (3.1) is correct for the « and &' transitions.
The transitions with rates 8’ and ' may be checked against (3.1) in similar
fashion, using the general property

q°(0,6')¢°(—06, —6¢')=0  forall ¢, ¢ (3.3)

In GWI we showed that the process with transition matrix ¢° is
dynamically reversible. For present purposes one need note only that this
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implies that the equilibrium probability distribution p°(c) satisfies the

conditions!*1¥
p°(6)=p’(—o0) (3.4)
and
p°(c")q°(0’, 6) = p°(6)¢°(~0, —o') (3.5)
furthermore,
7°(6)=¢°(—o) (3.6)
where
¢"(0)=Y ¢"(0. o) (37)

these conditions holding for all ¢ and ¢'. Equation (3.5) is a modified form
of the condition of detailed balance satisfied by classical reversible
processes. The method now hinges on the following simple result, which
seems to be new.

Proposition 1. For any dynamically reversible process with
transition matrix ¢°, the derived process with transition matrix of form
(3.1) is dynamically reversible and has the same equilibrium distribution
for all = 0. For =1 the derived process is also reversible.

Proof. Replacing ¢ and ¢’ by —o and —¢’ in (3.5) and using (3.4)
gives

p°(6")¢°(— o', —06)=p°(5)¢%o, ¢') (3.8)
Adding (3.5) to n times (3.8) gives
p°(e')q(e’, 6) = p°(6) g(—0, —0') (39)
Now putting
9() =3 q(o, ") (3.10)

gives
g(—06)=¢°(—06)+ng°(c)  [by (3.1)]
=4%0)+ng°(—o) by (3.6)]
— 4(0) (3.11)
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Equations (3.9) and (3.11) verify the conditions corresponding to (3.5) and
(3.6) for dynamic reversibility of the derived process, and (3.9) identifies p°
as its equilibrium distribution. Further, from (3.1)

q(—ﬁ, _6,):q(6: G’) if 11:1

so that (3.5) reduces to the standard condition of detailed balance, showing
the process to be reversible (e.g., ref. 13). This proves the proposition.
(Note that the proposition holds for ¢, taking any sets of values, and —o
representing any operation on o, defining a set of conjugate states in the
manner of Whittle,!213)

Returning to the process of interest, we have from GWI

N
po(c)zZlexp<—JZa,-ai+l> and Y o,=0 (3.12)

where
J=1Llog(y/a)>0 (3.13)
and Z is a normalizing constant and, by Proposition 1, this is the
equilibrium distribution of our general process for any #>0 and rates
satisfying (2.5).
Define the growth rate as the rate of change of the expected number of

atoms in the crystal per unit atomic distance along the edge. By the
argument of GWI, the steady-state growth rate is

G=[{q%0)> —niqg°(—e)>1/M
=(1-n){q°(0)>/M
=(1-9)G° (3.14)

by (3.6), where the expectation {-) is with respect to p° and G is the
growth rate when #=0.
From the form of p° and 4° it follows that, for fixed M, we can write

G° =aof (afy) (3.15)
for some function f. Putting, for n <1,

’

and J=p—y (3.16)

A=0—a

which represent, in a perverse sense, net rates for « and y events, we obtain
from (3.14)

G =af(&/7) (3.17)
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which is just the growth rate for a process with capture events only, of rates
& 7, and B=(&+7)/2. This process evidently has the same equilibrium
distribution p° as well.

In GWII we evaluated G° exactly and in various limiting regimes. For
example, for fixed « and v, and M — o we found

G° - (ap)*/[ 1 +(/y)'*] (3.18)

which, with (3.14), gives the limiting form of G in this long-edge limit.

4. SQUARE CRYSTAL STRUCTURE

Here the edge of a crystal is the upper profile of vertical stacks or
columns of squares as illustrated in Fig. 3a. Figure 3b illustrates the capture
and escape events with rates «, 8, y, and o', f, 7’ again.

States of the process are vectors h=(h,,.., h,,), where the h; are
integers (positive or negative) representing the size of the up steps when
moving from left to right along the crystal edge (#;=0 means no step,
h; <0 means a down step). Equal heights at the ends implies

(4.1)

-z
=
I
o

Il

(a)

allyBllp, BB vli@

A M 3

1

]

]

(b)

Fig. 3.(a) Edge of a crystal with square structure. (b) Single-atom transitions into and out
of the crystal edge. The presence of further side neighbor atoms, indicated by dashed lines,
does not influence these rates. Atoms can leave the top site or add to the top site of any
column.
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which is evidently preserved by the transitions. Again [ assume a
continuous-time Markov process with transition probability rates indicated
in Fig. 3b and denoted in general by g(h, h’). Irreducibility of this process
does not guarantee existence of an equilibrium probability p(h). The
process may be null recurrent or transient.

Again one can find p(h) only in the case where the rates satisfy (2.2)
and (2.3), or equivalently (2.5). I claim that

q(h, 0"y =g°(h, W) + ng°(—h, —h") (4.2)

where ¢° corresponds to the process with  =0. Checking this, note from
Fig. 3b that ¢°(h, h’) has value  when the transition h — h’ has the form
(taking A4 1 =h,)

h20-h+1
’ (4.3)
hj+1<0“’hj+1_1

with the other 4, unchanged. Thus, #¢°(~h, —h’) has the value na=a
when h — h' has the form

hj <0- hj —1
4.4)
B 20-h+1
This agrees with the « transition in Fig. 3b. Noting that
g°(h, h)g°(—h, —h")=0 (4.5)

and checking other transitions in a similar way confirms (4.2).

In GWI we showed this =0 process to be dynamically reversible,
giving equations like (3.4)-(3.7). Thus, by the arguments of Section 3, the
process is dynamically reversible for all # = 0. The equilibrium distribution
is, for all ¥ =0 and v> 0,

pO(h):zlexp(—sz |hi1>, ih,zo (4.6)

with J as in (3.13) and Z a (new) normalizing constant. The results
(3.14)—(3.17) are again applicable, and from GWII
G° — (ay)? as M- 4.7

whence

G- () (1—-n)=G,, say, as M — (4.8)
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Sadler [ref. 10, Eq. (12)] reviews a more physically based argument,
giving in the present notation, a growth rate

G,=(20p)"? (1 - B'/p) (49)
He does not use conditions (2.2) and (2.3), but takes instead

= and a'=0 (4.10)

To compare (4.8) with (4.9), choose o, f, y, o', f’, and y’ satisfying
(2.2) and (2.3), giving

G =[a(2~ )] (1—B'/B) (4.11)

Now hold «, f, y, and f’ fixed and reduce «' and y’' so that (4.10) is
satisfied. Reducing some escape rates, other rates remaining constant,
increases the growth rate. So a Markov process would predict a growth
rate greater than (4.11) under Sadler’s conditions, a result not inconsistent
with G,,.

When o <v, whence o €28, as is common for polymer crystallization,
(4.9) and (4.11) are very close. This, however, is the case where (4.10) and
(2.4) are most at odds.

Most notably, G, and G, definitely disagree when a=f=7#0 and
o' =f =y"=0, giving values 2%« and «, respectively. Sadler'” already
noted a dilemma created by this factor of 2 in G,.

Rates other than (2.5) with =1 can be chosen to give reversible
processes with equilibrium distribution of the form (4.6) and describing the
two-phase equilibrium (e.g., the two-dimensional version of the process of
Jackson®). Such processes, however, when modified so as to give net
crystal growth (e.g., Refs.S and 6), seem not to be amenable to exact
analysis.

In GWI (Section 12) we showed how the edge roughness of the crystal
was quantified in a natural way by the diffusion coefficient

2(o/y)" /01 = (a/y) "]

of a random walker whose steps are the h;. This result is independent of #,
a consequence of the fact that the equilibrium distribution (4.6) is indepen-
dent of . Physically this means roughly that the y’ events, which tend to
remove nucleations and produce a smoother edge, are balanced by the f’
transitions, which slow the extension of layers and so tend to produce a
rougher edge. Similar considerations apply to the hexagonal crystal struc-
ture (GWI, Section 12).
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5. CONTINUUM LIMIT

In GWI we gave a rigorous argument concerning the convergence of
the n =0 Markov processes to a continuous state-space process studied
most recently by Bennett et al.'"’ and Goldenfeld.”” Rather than extending
this lengthy argument to # >0, I give a more heuristic version. Fix n and
take

o=IiL/M and v=gM/L (5.1)

for fixed i>0, g>0, and L >0, with other rates given by (2.5). For either
the square or hexagonal model, take a complete layer of M atoms partly
covered by a single incomplete layer (of M/2 atoms, say). By (5.1), « and o
transitions are very rare as M — oo. If there are none in (0, ¢), then there
are no y or y’ transitions either (a.s. as M — oc). Thus, the process com-
prises independent Poisson processes of rates f# and p’. If we shrink atoms
to width L/M, so that the edge has fixed length L, then a step advances a
distance

X=(L/M)[N(1)—-N'(1)]

in time 7, where N(t) and N'(¢) are the numbers of § and f’ transitions in
time ¢. Thus, X has mean

(LIMYB—PB)t—g(l—nm)t as M-
by (5.1), and variance

(L>/M*)B+p)t-0 as M- o

Thus, a step moves deterministically with speed g{1—#) in the limit. If
n <1, layers become longer; if # =1, they remain static; and if n <1, they
shrink to nothing.

Isolated nucleations on a complete layer occur at rate iL/M per atomic
distance, hence at rate i per unit length. In GWI the process of all «
transitions is shown for # =0 to converge to a Poisson process of rate i
uniform on the edge [0, L] and on time intervals. For >0, there is no
certainty that a nucleation (x event) will survive, so that the analysis in
GWI does not carry straight over. To continue the heuristic argument,
suppose a single nucleation has occurred on a single-layer configuration of
length M sites. Henceforth, the only events of significant probability for
large M are y’ transitions with probability

ViV +28+(M=3)a]l—»n/(1+n) as M-oow

822/52/1-2-17
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p transitions with total probability
28/[y +28+(M—3)a] - 1/(1+9n) as M- w
if the new layer has length 1, and
2B/[20' + 26+ (M —n—2)a] - 1/(1+17) as M-

if the new layer has length #» and 1 <n<< M ~2, and B’ transitions with
total probability 0 if n= 1, and probability

287128+ 28+ (M —n—2)a]—n/(1 +14) as M-

if l<n<M—2. So, as M — oo, the probability of loss of the original
nucleation is just the probability of ruin of a gambler with initial stake 1
and probability p=1/(1+#) of winning and g =#/(1 + 1) of losing at each
play (against an infinite bank). A classical result [ref. 2, p. 347, Eq. (2.8)] is
that the gambler’s ultimate ruin has probability

1 if g>pie,n>1
glp=n if g<pie,n<1

Thus, the nucleation survives with probability 1 —# if # < 1, and so its rate
tends as M — oo to an effective nucleation rate (1 —#)a. If > 1, it does
not survive. To be observed at all in the continuum limit it must extend to
length at least AM for some A >0, which it does with probability 1/AM if
n>1 [ref.2, p.345, Eq.(2.5)]. Thus, there are no nucleations in the
continuum limit if #>1. (Note the distinction between these ruin or
random walk problems and those mentioned at the end of Section 4.)

Then the result of Bennett e al.” gives, for this continuum model, the
growth rate

Geon = [2i(1 —1) g(1 — 1)1 I, (u)/Io(u)
for n <1, where
u=L[2i(1—n)/g(1—n)]"
=L(2i/g)"*
So we can write
Geone = (1 =1)Glon,

is the result for # = 0. This latter result follows also from (3.14)
. given in GWIL

where G°

cont

and the direct proof that G° - G°

con
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Finally, note that for # =1, the reversible case, the continuum limit
process is entirely static: There is no nucleation or extension. For > 1, the
limit process is a reversed version of the Bennett et al. model, where gaps
are spontaneously created in layers, and these gaps grow deterministically.

6. FINAL COMMENT

For v<0 one has well-defined processes provided « +2v > 0. For the
square case, Z = o0 in (4.6), so there is no equilibrium distribution (ref. 9,
p. 3} and the process is not positive-recurrent. If o + 2v =0, whence y =0,
the process is evidently transient. This shows that there is a fundamental
physical difference in growth behavior between the cases x < ff <y and
o> f>1v. Since «, B, and y vary with temperature and concentration in the
fluid, this difference might be observable as a physical discontinuity.
The latter case may be relevant to the dendritic growth habit sometimes
observed.
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